dynamic_decode
- opennmt.utils.dynamic_decode(symbols_to_logits_fn, start_ids, end_id=2, initial_state=None, decoding_strategy=None, sampler=None, maximum_iterations=None, minimum_iterations=0, attention_history=False, attention_size=None, tflite_output_size=None)[source]
Dynamic decoding.
- Parameters
symbols_to_logits_fn – A callable taking
(symbols, step, state)
and returning(logits, state, attention)
(attention
is optional).start_ids – Initial input IDs of shape \([B]\).
end_id – ID of the end of sequence token.
initial_state – Initial decoder state.
decoding_strategy – A
opennmt.utils.DecodingStrategy
instance that defines the decoding logic. Defaults to a greedy search.sampler – A
opennmt.utils.Sampler
instance that samples predictions from the model output. Defaults to an argmax sampling.maximum_iterations – The maximum number of iterations to decode for.
minimum_iterations – The minimum number of iterations to decode for.
attention_history – Gather attention history during the decoding.
attention_size – If known, the size of the attention vectors (i.e. the maximum source length).
tflite_output_size – If not None will run TFLite safe, is the size of 1D output tensor.
- Returns
A
opennmt.utils.DecodingResult
instance.