WordEmbedder
- class opennmt.inputters.WordEmbedder(*args, **kwargs)[source]
Simple word embedder.
Inherits from:
opennmt.inputters.TextInputter
- __init__(embedding_size=None, dropout=0.0, **kwargs)[source]
Initializes the parameters of the word embedder.
- Parameters
embedding_size – The size of the resulting embedding. If
None
, an embedding file must be provided.dropout – The probability to drop units in the embedding.
**kwargs – Additional layer keyword arguments.
- set_decoder_mode(enable=True, mark_start=None, mark_end=None)[source]
Make this inputter produce sequences for a decoder.
In this mode, the returned “ids_out” feature is the decoder output sequence and “ids” is the decoder input sequence.
- Parameters
enable – Enable the decoder mode.
mark_start – Mark the sequence start. If
None
, keep the current value.mark_end – Mark the sequence end. If
None
, keep the current value.
- get_length(features, ignore_special_tokens=False)[source]
Returns the length of the input features, if defined.
- Parameters
features – The dictionary of input features.
ignore_special_tokens – Ignore special tokens that were added by the inputter (e.g. <s> and/or </s>).
- Returns
The length.
- initialize(data_config)[source]
Initializes the inputter.
- Parameters
data_config – A dictionary containing the data configuration set by the user.
- build(input_shape)[source]
Creates the variables of the layer (for subclass implementers).
This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().
This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).
- Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).
- call(features, training=None)[source]
Creates the model input from the features (e.g. word embeddings).
- Parameters
features – A dictionary of
tf.Tensor
, the output ofopennmt.inputters.Inputter.make_features()
.training – Run in training mode.
- Returns
The model input.