MultiInputter
- class opennmt.inputters.MultiInputter(*args, **kwargs)[source]
An inputter that gathers multiple inputters, possibly nested.
Inherits from:
opennmt.inputters.Inputter
Extended by:
- property asset_prefix
The asset prefix is used to differentiate resources of parallel inputters. The most basic examples are the “source_” and “target_” prefixes.
When reading the data configuration, the inputter will read fields that start with this prefix (e.g. “source_vocabulary”).
Assets exported by this inputter start with this prefix.
- property num_outputs
The number of parallel outputs produced by this inputter.
- initialize(data_config)[source]
Initializes the inputter.
- Parameters
data_config – A dictionary containing the data configuration set by the user.
- export_assets(asset_dir)[source]
Exports assets used by this tokenizer.
- Parameters
asset_dir – The directory where assets can be written.
- Returns
A dictionary containing additional assets used by the inputter.
- has_prepare_step()[source]
Returns
True
if this inputter implements a data preparation step in methodopennmt.inputters.Inputter.prepare_elements()
.
- prepare_elements(elements, training=None)[source]
Prepares dataset elements.
This method is called on a batch of dataset elements. For example, it can be overriden to apply an external pre-tokenization.
Note that the results of the method are unbatched and then passed to method
opennmt.inputters.Inputter.make_features()
.- Parameters
elements – A batch of dataset elements.
training – Run in training mode.
- Returns
A (possibly nested) structure of
tf.Tensor
.