Source code for onmt.utils.loss

This includes: LossComputeBase and the standard NMTLossCompute, and
               sharded loss compute stuff.
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F

import onmt
from onmt.modules.sparse_losses import SparsemaxLoss
from onmt.modules.sparse_activations import LogSparsemax

def build_loss_compute(model, tgt_field, opt, train=True):
    Returns a LossCompute subclass which wraps around an nn.Module subclass
    (such as nn.NLLLoss) which defines the loss criterion. The LossCompute
    object allows this loss to be computed in shards and passes the relevant
    data to a Statistics object which handles training/validation logging.
    Currently, the NMTLossCompute class handles all loss computation except
    for when using a copy mechanism.
    device = torch.device("cuda" if onmt.utils.misc.use_gpu(opt) else "cpu")

    padding_idx = tgt_field.vocab.stoi[tgt_field.pad_token]
    unk_idx = tgt_field.vocab.stoi[tgt_field.unk_token]

    if opt.lambda_coverage != 0:
        assert opt.coverage_attn, "--coverage_attn needs to be set in " \
            "order to use --lambda_coverage != 0"

    if opt.copy_attn:
        criterion = onmt.modules.CopyGeneratorLoss(
            len(tgt_field.vocab), opt.copy_attn_force,
            unk_index=unk_idx, ignore_index=padding_idx
    elif opt.label_smoothing > 0 and train:
        criterion = LabelSmoothingLoss(
            opt.label_smoothing, len(tgt_field.vocab), ignore_index=padding_idx
    elif isinstance(model.generator[-1], LogSparsemax):
        criterion = SparsemaxLoss(ignore_index=padding_idx, reduction='sum')
        criterion = nn.NLLLoss(ignore_index=padding_idx, reduction='sum')

    # if the loss function operates on vectors of raw logits instead of
    # probabilities, only the first part of the generator needs to be
    # passed to the NMTLossCompute. At the moment, the only supported
    # loss function of this kind is the sparsemax loss.
    use_raw_logits = isinstance(criterion, SparsemaxLoss)
    loss_gen = model.generator[0] if use_raw_logits else model.generator
    if opt.copy_attn:
        compute = onmt.modules.CopyGeneratorLossCompute(
            criterion, loss_gen, tgt_field.vocab, opt.copy_loss_by_seqlength,
        compute = NMTLossCompute(
            criterion, loss_gen, lambda_coverage=opt.lambda_coverage)

    return compute

[docs]class LossComputeBase(nn.Module): """ Class for managing efficient loss computation. Handles sharding next step predictions and accumulating multiple loss computations Users can implement their own loss computation strategy by making subclass of this one. Users need to implement the _compute_loss() and make_shard_state() methods. Args: generator (:obj:`nn.Module`) : module that maps the output of the decoder to a distribution over the target vocabulary. tgt_vocab (:obj:`Vocab`) : torchtext vocab object representing the target output normalzation (str): normalize by "sents" or "tokens" """ def __init__(self, criterion, generator): super(LossComputeBase, self).__init__() self.criterion = criterion self.generator = generator @property def padding_idx(self): return self.criterion.ignore_index def _make_shard_state(self, batch, output, range_, attns=None): """ Make shard state dictionary for shards() to return iterable shards for efficient loss computation. Subclass must define this method to match its own _compute_loss() interface. Args: batch: the current batch. output: the predict output from the model. range_: the range of examples for computing, the whole batch or a trunc of it? attns: the attns dictionary returned from the model. """ return NotImplementedError def _compute_loss(self, batch, output, target, **kwargs): """ Compute the loss. Subclass must define this method. Args: batch: the current batch. output: the predict output from the model. target: the validate target to compare output with. **kwargs(optional): additional info for computing loss. """ return NotImplementedError def __call__(self, batch, output, attns, normalization=1.0, shard_size=0, trunc_start=0, trunc_size=None): """Compute the forward loss, possibly in shards in which case this method also runs the backward pass and returns ``None`` as the loss value. Also supports truncated BPTT for long sequences by taking a range in the decoder output sequence to back propagate in. Range is from `(trunc_start, trunc_start + trunc_size)`. Note sharding is an exact efficiency trick to relieve memory required for the generation buffers. Truncation is an approximate efficiency trick to relieve the memory required in the RNN buffers. Args: batch (batch) : batch of labeled examples output (:obj:`FloatTensor`) : output of decoder model `[tgt_len x batch x hidden]` attns (dict) : dictionary of attention distributions `[tgt_len x batch x src_len]` normalization: Optional normalization factor. shard_size (int) : maximum number of examples in a shard trunc_start (int) : starting position of truncation window trunc_size (int) : length of truncation window Returns: A tuple with the loss and a :obj:`onmt.utils.Statistics` instance. """ if trunc_size is None: trunc_size = batch.tgt.size(0) - trunc_start trunc_range = (trunc_start, trunc_start + trunc_size) shard_state = self._make_shard_state(batch, output, trunc_range, attns) if shard_size == 0: loss, stats = self._compute_loss(batch, **shard_state) return loss / float(normalization), stats batch_stats = onmt.utils.Statistics() for shard in shards(shard_state, shard_size): loss, stats = self._compute_loss(batch, **shard) loss.div(float(normalization)).backward() batch_stats.update(stats) return None, batch_stats def _stats(self, loss, scores, target): """ Args: loss (:obj:`FloatTensor`): the loss computed by the loss criterion. scores (:obj:`FloatTensor`): a score for each possible output target (:obj:`FloatTensor`): true targets Returns: :obj:`onmt.utils.Statistics` : statistics for this batch. """ pred = scores.max(1)[1] non_padding = num_correct = pred.eq(target).masked_select(non_padding).sum().item() num_non_padding = non_padding.sum().item() return onmt.utils.Statistics(loss.item(), num_non_padding, num_correct) def _bottle(self, _v): return _v.view(-1, _v.size(2)) def _unbottle(self, _v, batch_size): return _v.view(-1, batch_size, _v.size(1))
class LabelSmoothingLoss(nn.Module): """ With label smoothing, KL-divergence between q_{smoothed ground truth prob.}(w) and p_{prob. computed by model}(w) is minimized. """ def __init__(self, label_smoothing, tgt_vocab_size, ignore_index=-100): assert 0.0 < label_smoothing <= 1.0 self.ignore_index = ignore_index super(LabelSmoothingLoss, self).__init__() smoothing_value = label_smoothing / (tgt_vocab_size - 2) one_hot = torch.full((tgt_vocab_size,), smoothing_value) one_hot[self.ignore_index] = 0 self.register_buffer('one_hot', one_hot.unsqueeze(0)) self.confidence = 1.0 - label_smoothing def forward(self, output, target): """ output (FloatTensor): batch_size x n_classes target (LongTensor): batch_size """ model_prob = self.one_hot.repeat(target.size(0), 1) model_prob.scatter_(1, target.unsqueeze(1), self.confidence) model_prob.masked_fill_((target == self.ignore_index).unsqueeze(1), 0) return F.kl_div(output, model_prob, reduction='sum') class NMTLossCompute(LossComputeBase): """ Standard NMT Loss Computation. """ def __init__(self, criterion, generator, normalization="sents", lambda_coverage=0.0): super(NMTLossCompute, self).__init__(criterion, generator) self.lambda_coverage = lambda_coverage def _make_shard_state(self, batch, output, range_, attns=None): shard_state = { "output": output, "target": batch.tgt[range_[0] + 1: range_[1], :, 0], } if self.lambda_coverage != 0.0: coverage = attns.get("coverage", None) std = attns.get("std", None) assert attns is not None assert std is not None, "lambda_coverage != 0.0 requires " \ "attention mechanism" assert coverage is not None, "lambda_coverage != 0.0 requires " \ "coverage attention" shard_state.update({ "std_attn": attns.get("std"), "coverage_attn": coverage }) return shard_state def _compute_loss(self, batch, output, target, std_attn=None, coverage_attn=None): bottled_output = self._bottle(output) scores = self.generator(bottled_output) gtruth = target.view(-1) loss = self.criterion(scores, gtruth) if self.lambda_coverage != 0.0: coverage_loss = self._compute_coverage_loss( std_attn=std_attn, coverage_attn=coverage_attn) loss += coverage_loss stats = self._stats(loss.clone(), scores, gtruth) return loss, stats def _compute_coverage_loss(self, std_attn, coverage_attn): covloss = torch.min(std_attn, coverage_attn).sum() covloss *= self.lambda_coverage return covloss def filter_shard_state(state, shard_size=None): for k, v in state.items(): if shard_size is None: yield k, v if v is not None: v_split = [] if isinstance(v, torch.Tensor): for v_chunk in torch.split(v, shard_size): v_chunk = v_chunk.requires_grad = v.requires_grad v_split.append(v_chunk) yield k, (v, v_split) def shards(state, shard_size, eval_only=False): """ Args: state: A dictionary which corresponds to the output of *LossCompute._make_shard_state(). The values for those keys are Tensor-like or None. shard_size: The maximum size of the shards yielded by the model. eval_only: If True, only yield the state, nothing else. Otherwise, yield shards. Yields: Each yielded shard is a dict. Side effect: After the last shard, this function does back-propagation. """ if eval_only: yield filter_shard_state(state) else: # non_none: the subdict of the state dictionary where the values # are not None. non_none = dict(filter_shard_state(state, shard_size)) # Now, the iteration: # state is a dictionary of sequences of tensor-like but we # want a sequence of dictionaries of tensors. # First, unzip the dictionary into a sequence of keys and a # sequence of tensor-like sequences. keys, values = zip(*((k, [v_chunk for v_chunk in v_split]) for k, (_, v_split) in non_none.items())) # Now, yield a dictionary for each shard. The keys are always # the same. values is a sequence of length #keys where each # element is a sequence of length #shards. We want to iterate # over the shards, not over the keys: therefore, the values need # to be re-zipped by shard and then each shard can be paired # with the keys. for shard_tensors in zip(*values): yield dict(zip(keys, shard_tensors)) # Assumed backprop'd variables = [] for k, (v, v_split) in non_none.items(): if isinstance(v, torch.Tensor) and state[k].requires_grad: variables.extend(zip(torch.split(state[k], shard_size), [v_chunk.grad for v_chunk in v_split])) inputs, grads = zip(*variables) torch.autograd.backward(inputs, grads)